
fabric8io/fabric8-maven-plugin
Roland Huß, James Strachan

Version 4.1.0, 2019-04-17

fabric8-maven-plugin
1. Introduction . 2

1.1. Building Images . 2

1.2. Kubernetes and OpenShift Resources . 2

1.3. Configuration . 2

1.4. Examples . 3

1.4.1. Zero-Config . 4

1.4.2. XML Configuration . 6

1.4.3. Resource Fragments. 9

2. Compatibility with OpenShift and Kubernetes. 11

2.1. OpenShift Compatibility . 11

2.2. Kubernetes Compatibility . 11

3. Installation . 12

4. Goals Overview . 14

5. Build Goals. 15

5.1. fabric8:resource . 15

5.1.1. Labels and Annotations . 15

5.1.2. Secrets . 17

5.1.3. Resource Validation . 18

5.1.4. Route Generation . 19

5.1.5. Other flags . 20

5.2. fabric8:build . 20

5.2.1. Kubernetes Build . 20

5.2.2. OpenShift Build . 21

5.2.3. Configuration . 22

5.2.4. Access Configuration . 25

5.2.5. Image Configuration . 26

5.2.6. Build Configuration . 27

5.2.7. Assembly . 35

5.2.8. Environment and Labels . 38

5.2.9. Startup Arguments . 39

5.2.10. Build Args . 40

5.3. fabric8:push . 41

5.4. fabric8:apply . 41

5.5. fabric8:resource-apply . 42

5.6. fabric8:helm . 43

6. Development Goals . 45

6.1. fabric8:deploy . 45

6.2. fabric8:undeploy . 46

6.3. fabric8:log . 46

6.4. fabric8:debug . 47

6.4.1. Speeding up debugging . 47

6.4.2. Debugging with suspension . 48

6.5. fabric8:watch . 49

6.5.1. Spring Boot . 50

6.5.2. Docker Image. 50

7. Generators . 51

7.1. Default Generators. 53

7.1.1. Java Applications . 54

7.1.2. Spring Boot . 55

7.1.3. Wildfly Swarm . 56

7.1.4. Thorntail v2 . 56

7.1.5. Vert.x . 56

7.1.6. Karaf . 57

7.1.7. Web Applications . 58

7.2. Generator API . 59

8. Enrichers . 60

8.1. Default Enrichers . 60

8.1.1. Standard Enrichers . 62

8.1.2. Fabric8 Enrichers . 67

8.2. Enricher API . 84

9. Profiles . 85

9.1. Generator and Enricher definitions . 86

9.2. Lookup order . 86

9.3. Using Profiles . 87

9.4. Predefined Profiles . 88

9.5. Extending Profiles . 89

10. Access configuration . 91

10.1. Docker Access . 91

10.2. OpenShift and Kubernetes Access . 91

11. Registry handling. 92

12. Authentication . 94

12.1. Pull vs. Push Authentication . 95

12.2. OpenShift Authentication . 96

12.3. Password encryption . 97

12.4. Extended Authentication . 97

13. Migration from version 2 . 98

14. FAQ . 99

14.1. General questions . 99

14.1.1. How do I define an environment variable?. 99

14.1.2. How do I define a system property? . 99

14.1.3. How do I mount a config file from a ConfigMap? . 99

14.1.4. How do I use a Persistent Volume? . 100

15. Appendix . 102

15.1. Kind/Filename Type Mapping . 102

15.2. Custom Kind/Filename Mapping . 103

© 2016 The original authors.

1

Chapter 1. Introduction
The fabric8-maven-plugin (f8-m-p) brings your Java applications on to Kubernetes and OpenShift.
It provides a tight integration into Maven and benefits from the build configuration already
provided. This plugin focus on two tasks: Building Docker images and creating Kubernetes and
OpenShift resource descriptors. It can be configured very flexibly and supports multiple
configuration models for creating: A Zero-Config setup allows for a quick ramp-up with some
opinionated defaults. For more advanced requirements, an XML configuration provides additional
configuration options which can be added to the pom.xml. For the full power, in order to tune all
facets of the creation, external resource fragments and Dockerfiles can be used.

1.1. Building Images
The fabric8:build goal is for creating Docker images containing the actual application. These then
can be deployed later on Kubernetes or OpenShift. It is easy to include build artifacts and their
dependencies into these images. This plugin uses the assembly descriptor format from the maven-
assembly-plugin to specify the content which will be added to the image. That images can then be
pushed to public or private Docker registries with fabric8:push.

Depending on the operational mode, for building the actual image either a Docker daemon is used
directly or an OpenShift Docker Build is performed.

A special fabric8:watch goal allows for reacting to code changes to automatically recreate images
or copy new artifacts into running containers.

These image related features are inherited from the fabric8io/docker-maven-plugin which is part of
this plugin.

1.2. Kubernetes and OpenShift Resources
Kubernetes and OpenShift resource descriptors can be created or generated from
fabric8:resource. These files are packaged within the Maven artifacts and can be deployed to a
running orchestration platform with fabric8:apply.

Typically you only specify a small part of the real resource descriptors which will be enriched by
this plugin with various extra information taken from the pom.xml. This drastically reduces
boilerplate code for common scenarios.

1.3. Configuration
As mentioned already there are three levels of configuration:

• Zero-Config mode makes some very opinionated decisions based on what is present in the
pom.xml like what base image to use or which ports to expose. This is great for starting up
things and for keeping quickstart applications small and tidy.

• XML plugin configuration mode is similar to what docker-maven-plugin provides. This allows
for type-safe configuration with IDE support, but only a subset of possible resource descriptor

2

http://kubernetes.io/
https://www.openshift.com/
http://maven.apache.org
http://maven.apache.org/plugins/maven-assembly-plugin/
http://maven.apache.org/plugins/maven-assembly-plugin/
https://docs.openshift.com/enterprise/3.0/architecture/core_concepts/builds_and_image_streams.html#docker-build
https://github.com/fabric8io/docker-maven-plugin
https://fabric8io.github.io/docker-maven-plugin/#example

features is provided.

• Kubernetes & OpenShift resource fragments are user provided YAML files that can be
enriched by the plugin. This allows expert users to use a plain configuration file with all their
capabilities, but also to add project specific build information and avoid boilerplate code.

The following table gives an overview of the different models

Table 1. Configuration Models

Model Docker Images Resource Descriptors

Zero-
Config

Generators are used to create Docker image
configurations. Generators can detect certain
aspects of the build (e.g. whether Spring Boot is
used) and then choose some default like the base
image, which ports to expose and the startup
command. They can be configured, but offer
only a few options.

Default Enrichers will create a
default Service and Deployment
(DeploymentConfig for OpenShift)
when no other resource objects are
provided. Depending on the image
they can detect which port to
expose in the service. As with
Generators, Enrichers support a
limited set of configuration options.

XML
configurat
ion

f8-m-p inherits the XML based configuration for
building images from the docker-maven-plugin
and provides the same functionality. It supports
an assembly descriptor for specifying the
content of the Docker image.

A subset of possible resource objects
can be configured with a dedicated
XML syntax. With a decent IDE you
get autocompletion on most object
and inline documentation for the
available configuration elements.
The provided configuration can be
still enhanced by Enhancers which
is useful for adding e.g. labels and
annotations containing build or
other information.

Resource
Fragments
and
Dockerfile
s

Similarly to the docker-maven-plugin, f8-m-p
supports external Dockerfiles too, which are
referenced from the plugin configuration.

Resource descriptors can be
provided as external YAML files
which specify a skeleton. This
skeleton is then filled by Enrichers
which add labels and more. Maven
properties within these files are
resolved to thier values. With this
model you can use every
Kubernetes / OpenShift resource
object with all their flexibility, but
still get the benefit of adding build
information.

1.4. Examples
Let’s have a look at some code. The following examples will demonstrate all three configurations
variants:

3

https://fabric8io.github.io/docker-maven-plugin/#docker:build
http://maven.apache.org/components/plugins/maven-assembly-plugin/assembly.html

1.4.1. Zero-Config

This minimal but full working example pom.xml shows how a simple spring boot application can be
dockerized and prepared for Kubernetes and OpenShift. The full example can be found in directory
samples/zero-config.

Example

<project>
 <modelVersion>4.0.0</modelVersion>

 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-maven-sample-zero-config</artifactId>
 <version>4.1.0</version>
 <packaging>jar</packaging>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId> ①
 <version>1.5.5.RELEASE</version>
 </parent>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId> ②
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId> ③
 </plugin>
 <plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-maven-plugin</artifactId> ④
 <version>4.1.0</version>
 </plugin>
 </plugins>
 </build>
</project>

① This minimalistic spring boot application uses the spring-boot parent POM for setting up
dependencies and plugins

② The Spring Boot web starter dependency enables a simple embedded Tomcat for serving Spring
MVC apps

③ The spring-boot-maven-plugin is responsible for repackaging the application into a fat jar,
including all dependencies and the embedded Tomcat

4

https://github.com/fabric8io/fabric8-maven-plugin/tree/master/samples/zero-config

④ The fabric8-maven-plugin enables the automatic generation of a Docker image and Kubernetes /
OpenShift descriptors including this Spring application.

This setup make some opinionated decisions for you:

• As base image fabric8/java-jboss-openjdk8-jdk is chosen which enables Jolokia and
jmx_exporter. It also comes with a sophisticated startup script.

• It will create a Kubernetes Deployment and a Service as resource objects

• It exports port 8080 as the application service port (and 8778 and 9779 for Jolokia and
jmx_exporter access, respectively)

These choices can be influenced by configuration options as decribed in Spring Boot Generator.

To start the Docker image build, you simply run

mvn package fabric8:build

This will create the Docker image against a running Docker daemon (which must be accessible
either via Unix Socket or with the URL set in DOCKER_HOST). Alternatively, when connected to an
OpenShift cluster (or using the openshift mode explicitly), then a Docker build will be performed on
OpenShift which at the end creates an ImageStream.

To deploy the resources to the cluster call

mvn fabric8:resource fabric8:deploy

By default a Service and a Deployment object pointing to the created Docker image is created. When
running in OpenShift mode, a Service and DeploymentConfig which refers the ImageStream created
with fabric8:build will be installed.

Of course you can bind all those fabric8-goals to execution phases as well, so that they are called
along with standard lifecycle goals like install. For example, to bind the building of the Kubernetes
resource files and the Docker images, add the following goals to the execution of the f-m-p:

5

https://github.com/fabric8io-images/java/tree/master/images/jboss/openjdk8/jdk
https://www.jolokia.org
https://github.com/prometheus/jmx_exporter
https://github.com/fabric8io-images/run-java-sh
http://kubernetes.io/docs/user-guide/deployments/
http://kubernetes.io/docs/user-guide/services/
https://docs.openshift.com/enterprise/3.1/architecture/core_concepts/builds_and_image_streams.html

Example for lifecycle bindings

<plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>

 <!-- ... -->

 <executions>
 <execution>
 <goals>
 <goal>resource</goal>
 <goal>build</goal>
 </goals>
 </execution>
 </executions>
</plugin>

If you’d also like to automatically deploy to Kubernetes each time you do a mvn install you can add
the deploy goal:

Example for lifecycle bindings with automatic deploys for mvn install

<plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>

 <!-- ... -->

 <executions>
 <execution>
 <goals>
 <goal>resource</goal>
 <goal>build</goal>
 <goal>deploy</goal>
 </goals>
 </execution>
 </executions>
</plugin>

1.4.2. XML Configuration


XML based configuration is only partially implemented and is not recommended
for use right now.

Although the Zero-config mode and its generators can be tweaked with options up to a certain
degree, many cases require more flexibility. For such instances, an XML-based plugin configuration
can be used, in a way similar to the XML configuration used by docker-maven-plugin.

6

https://fabric8io.github.io/docker-maven-plugin/#configuration

The plugin configuration can be roughly divided into the following sections:

• Global configuration options are responsible for tuning the behaviour of plugin goals

• <images> defines which Docker images are used and configured. This section is similar to the
image configuration of the docker-maven-plugin, except that <run> and <external> sub-elements
are ignored)

• <resource> defines the resource descriptors for deploying on an OpenShift or Kuberneres
cluster.

• <generator> configures generators which are responsible for creating images. Generators are
used as an alternative to a dedicated <images> section.

• <enricher> configures various aspects of enrichers for creating or enhancing resource
descriptors.

A working example can be found in the samples/xml-config directory. An extract of the plugin
configuration is shown below:

Example for an XML configuration

<configuration>
 <namespace>test-ns</namespace>
 <images> ①
 
 </images>

 <resources> ②
 <labels> ③
 <all>
 <group>quickstarts</group>
 </all>
 </labels>

 <deployment> ④
 <name>${project.artifactId}</name>
 <replicas>1</replicas>

7

https://fabric8io.github.io/docker-maven-plugin/#image-configuration
https://github.com/fabric8io/fabric8-maven-plugin/tree/master/samples/xml-config

 <containers> ⑤
 <container>
 <alias>camel-app</alias> ⑥
 <ports>
 <port>8778</port>
 </ports>
 <mounts>
 <scratch>/var/scratch</scratch>
 </mounts>
 </container>
 </containers>

 <volumes> ⑦
 <volume>
 <name>scratch</name>
 <type>emptyDir</type>
 </volume>
 </volumes>
 </deployment>

 <services> ⑧
 <service>
 <name>camel-service</name>
 <headless>true</headless>
 </service>
 </services>

 <serviceAccounts>
 <serviceAccount>
 <name>build-robot</name>
 </serviceAccount>
 </serviceAccounts>
 </resources>
</configuration>

① Standard docker-maven-plugin configuration for building one single Docker image

② Kubernetes / OpenShift resources to create

③ Labels which should be applied globally to all resource objects

④ Definition of a Deployment to create

⑤ Containers to include in the deployment

⑥ An alias is used to correlate a container’s image with the image definition in the <images> section
where each image carry an alias. Can be omitted if only a single image is used

⑦ Volume definitions used in a Deployment’s ReplicaSet

⑧ One or more Service definitions.

The XML resource configuration is based on plain Kubernetes resource objects. When targeting
OpenShift, Kubernetes resource descriptors will be automatically converted to their OpenShift

8

http://kubernetes.io/docs/user-guide/deployments/
http://kubernetes.io/docs/user-guide/volumes/
http://kubernetes.io/docs/user-guide/services/

counterparts, e.g. a Kubernetes Deployment will be converted to an OpenShift DeploymentConfig.

1.4.3. Resource Fragments

The third configuration option is to use an external configuration in form of YAML resource
descriptors which are located in the src/main/fabric8 directory. Each resource get its own file,
which contains a skeleton of a resource descriptor. The plugin will pick up the resource, enrich it
and then combine all to a single kubernetes.yml and openshift.yml file. Within these descriptor files
you are can freely use any Kubernetes feature.

Note: In order to support simultaneously both OpenShift and Kubernetes, there is currently no way
to specify OpenShift-only features this way, though this might change in future releases.

Let’s have a look at an example from samples/external-resources. This is a plain Spring Boot
application, whose images are auto generated like in the Zero-Config case. The resource fragments
are in src/main/fabric8.

Example fragment "deployment.yml"

spec:
 replicas: 1
 template:
 spec:
 volumes:
 - name: config
 gitRepo:
 repository: 'https://github.com/jstrachan/sample-springboot-config.git'
 revision: 667ee4db6bc842b127825351e5c9bae5a4fb2147
 directory: .
 containers:
 - volumeMounts:
 - name: config
 mountPath: /app/config
 env:
 - name: KUBERNETES_NAMESPACE
 valueFrom:
 fieldRef:
 apiVersion: v1
 fieldPath: metadata.namespace
 serviceAccount: ribbon

As you can see, there is no metadata section as would be expected for Kubernetes resources because
it will be automatically added by the fabric8-maven-plugin. The object’s Kind, if not given, is
automatically derived from the filename. In this case, the fabric8-maven-plugin will create a
Deployment because the file is called deployment.yml. Similar mappings between file names and
resource type exist for each supported resource kind, the complete list of which (along with
associated abbreviations) can be found in the Appendix.

9

http://kubernetes.io/docs/user-guide/deployments/
https://docs.openshift.org/latest/architecture/core_concepts/deployments.html#deployments-and-deployment-configurations
https://github.com/rhuss/fabric8-maven-plugin/tree/master/samples/external-resources



Now that sidecar containers are supported in this plugin, be careful whenever
you’re supplying container name in the resource fragment. If container specified
in resource fragment doesn’t have a name or it’s name is equal to default fmp
generated application’s container name; it would not be treated as sidecar and it
would be merged into main container. However, You can override plugin’s
default name for main container via fabric8.generator.alias property.

Additionally, if you name your fragment using a name prefix followed by a dash and the mapped
file name, the plugin will automatically use that name for your resource. So, for example, if you
name your deployment fragment myapp-deployment.yml, the plugin will name your resource myapp.
In the absence of such provided name for your resource, a name will be automatically derived
from your project’s metadata (in particular, its artifactId as specified in your POM).

No image is also referenced in this example because the plugin also fills in the image details based
on the configured image you are building with (either from a generator or from a dedicated image
plugin configuration, as seen before).


For building images there is also an alternative mode using external Dockerfiles,
in addition to the XML based configuration. Refer to fabric8:build for details.

Enrichment of resource fragments can be fine-tuned by using profile sub-directories. For more
details see Profiles.

Now that we have seen some examples for the various ways how this plugin can be used, the
following sections will describe the plugin goals and extension points in detail.

10

Chapter 2. Compatibility with OpenShift and
Kubernetes

2.1. OpenShift Compatibility
Table 2. OpenShift Comptatibility

FMP OpenShift
3.9.0

OpenShift
3.7.0

OpenShift
3.6.0

OpenShift
3.5.0

OpenShift
1.4.1

FMP 3.5.38 ✓ ✓ ✓ x x

FMP 3.5.37 ✓ ✓ ✓ x x

FMP 3.5.36 ✓ ✓ ✓ x x

FMP 3.5.35 ✓ ✓ ✓ x x

FMP 3.5.34 ✓ ✓ ✓ x x

FMP 3.5.33 ✓ ✓ ✓ x x

FMP 3.5.32 ✓ ✓ ✓ ✓ ✓

2.2. Kubernetes Compatibility
Table 3. Kubernetes Compatibility

FMP Kubernetes
1.9.0

Kubernetes
1.8.0

Kubernetes
1.7.0

Kubernetes
1.6.0

Kubernetes
1.5.1

Kubernetes
1.4.0

FMP 3.5.38 ✓ ✓ ✓ ✓ ✓ ✓

FMP 3.5.37 ✓ ✓ ✓ ✓ ✓ ✓

FMP 3.5.36 ✓ ✓ ✓ ✓ ✓ ✓

FMP 3.5.35 ✓ ✓ ✓ ✓ ✓ ✓

FMP 3.5.34 ✓ ✓ ✓ ✓ ✓ ✓

FMP 3.5.33 ✓ ✓ ✓ ✓ ✓ ✓

FMP 3.5.32 ✓ ✓ ✓ ✓ ✓ ✓

11

Chapter 3. Installation
This plugin is available from Maven central and can be connected to pre- and post-integration
phase as seen below. The configuration and available goals are described below.

By default, Maven will only search for plugins in the org.apache.maven.plugins and
org.codehaus.mojo packages. In order to resolve the provider for the Fabric8 plugin goals, you need
to edit ~/.m2/settings.xml and add the io.fabric8 namespace so the <pluginGroups> configuration.

<settings>
 ...

 <pluginGroups>
 <pluginGroup>io.fabric8</pluginGroup>
 </pluginGroups>

 ...
</settings>

12

<plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>
 <version>4.1.0</version>

 <configuration>

 <images>
 <!-- A single's image configuration -->
 

 </images>
 </configuration>

 <!-- Connect fabric8:resource, fabric8:build and fabric8:helm to lifecycle phases
-->
 <executions>
 <execution>
 <id>fabric8</id>
 <goals>
 <goal>resource</goal>
 <goal>build</goal>
 <goal>helm</goal>
 </goals>
 </execution>
 </executions>
</plugin>

13

Chapter 4. Goals Overview
This plugin supports a rich set for providing a smooth Java developer experience. These goals can
be categorized in multiple groups:

• Build goals are all about creating and managing Kubernetes and OpenShift build artifacts like
Docker images or S2I builds.

• Development goals target help not only in deploying resource descriptors to the development
cluster but also to manage the lifecycle of the development cluster as well.

Table 4. Build Goals

Goal Description

fabric8:build Build images

fabric8:push Push images to a registry

fabric8:resource Create Kubernetes or OpenShift resource descriptors

fabric8:apply Apply resources to a running cluster

fabric8:resource-
apply

Run fabric8:resource ➜ fabric8:apply

Table 5. Development Goals

Goal Description

fabric8:deploy Deploy resources decriptors to a cluster after creating them and building
the app. Same as [fabric8:run] except that it runs in the backgorund.

fabric8:undeploy Undeploy and remove resources decriptors from a cluster.

fabric8:watch Watch for file changes and perform rebuilds and redeployments

fabric8:log Show the logs of the running application

fabric8:debug Enable remote debugging

Depending on whether the OpenShift or Kubernetes operational mode is used, the workflow and
the performed actions differs :

Table 6. Workflows

Use Case Kubernetes OpenShift

Build fabric8:build fabric8:push * Creates a
image against an exposed Docker daemon
(with a docker.tar) * Pushes the image to a
registry which is then referenced from the
configuration

fabric8:build * Creates or uses a
BuildConfig * Creates or uses an
ImageStream which can be referenced by
the deployment descriptors in a
DeploymenConfig * Starts an OpenShift build
with a docker.tar as input

Deploy fabric8:deploy * Applies a Kubernetes
resource descriptor to cluster

fabric8:deploy * Applies an OpenShift
resource descriptor to a cluster

14

Chapter 5. Build Goals

5.1. fabric8:resource

 This is chapter is incomplete, but there is work in progress.

5.1.1. Labels and Annotations

Labels and annotations can be easily added to any resource object. This is best explained by an
example.

15

Example for label and annotations

<plugin>
 ...
 <configuration>
 ...
 <resources>
 <labels> ①
 <all> ①
 <property> ②
 <name>organisation</name>
 <value>unesco</value>
 </property>
 </all>
 <service> ③
 <property>
 <name>database</name>
 <value>mysql</value>
 </property>
 <property>
 <name>persistent</name>
 <value>true</value>
 </property>
 </service>
 <replicaSet> ④
 ...
 </replicaSet>
 <pod> ⑤
 ...
 </pod>
 <deployment> ⑥
 ...
 </deployment>
 </labels>

 <annotations> ⑦
 ...
 </annotations>
 <remotes> ⑧

<remote>https://gist.githubusercontent.com/lordofthejars/ac2823cec7831697d09444bbaa76c
d50/raw/e4b43f1b6494766dfc635b5959af7730c1a58a93/deployment.yaml</remote>
 </remotes>
 </resource>
 </configuration>
</plugin>

① <labels> section with <resources> contains labels which should be applied to objects of various
kinds

② Within <all> labels which should be applied to every object can be specified

16

③ <service> labels are used to label services

④ <replicaSet> labels are for replica set and replication controller

⑤ <pod> holds labels for pod specifications in replication controller, replica sets and deployments

⑥ <deployment> is for labels on deployments (kubernetes) and deployment configs (openshift)

⑦ The subelements are also available for specifying annotations.

⑧ <remotes> you can set location of fragments as URL.

Labels and annotations can be specified in free form as a map. In this map the element name is the
name of the label or annotation respectively, whereas the content is the value to set.

The following subelements are possible for <labels> and <annotations> :

Table 7. Label and annotation configuration

Element Description

all All entries specified in the <all> sections are applied to all resource objects created.
This also implies build object like image stream and build configs which are create
implicitely for an OpenShift build.

deployment Labels and annotations applied to Deployment (for Kubernetes) and DeploymentConfig
(for OpenShift) objects

pod Labels and annotations applied pod specification as used in ReplicationController,
ReplicaSets, Deployments and DeploymentConfigs objects.

replicaSet Labels and annotations applied to ReplicaSet and ReplicationController objects.

service Labels and annotations applied to Service objects.

5.1.2. Secrets

Once you’ve configured some docker registry credentials into ~/.m2/setting.xml, as explained in the
Authentication section, you can create Kubernetes secrets from a server declaration.

XML configuration

You can create a secret using xml configuration in the pom.xml file. It should contain the following
fields:

key required description

dockerSer
verId

true the server id which is configured in ~/.m2/setting.xml

name true this will be used as name of the kubernetes secret resource

namespac
e

false the secret resource will be applied to the specific namespace, if provided

This is best explained by an example.

17

Example for XML configuration

<properties>
 <docker.registry>docker.io</docker.registry>
</properties>
...
<configuration>
 <resources>
 <secrets>
 <secret>
 <dockerServerId>${docker.registry}</dockerServerId>
 <name>mydockerkey</name>
 </secret>
 </secrets>
 </resources>
</configuration>

Yaml fragment with annotation

You can create a secret using a yaml fragment. You can reference the docker server id with an
annotation maven.fabric8.io/dockerServerId. The yaml fragment file should be put under the
src/main/fabric8/ folder.

Example

apiVersion: v1
kind: Secret
metadata:
 name: mydockerkey
 namespace: default
 annotations:
 maven.fabric8.io/dockerServerId: ${docker.registry}
type: kubernetes.io/dockercfg

5.1.3. Resource Validation

Resource goal also validates the generated resource descriptors using API specification of
Kubernetes and OpenShift.

Table 8. Validation Configuration

Configurat
ion

Description Default

fabric8.ski
pResource
Validation

If value is set to true then resource validation is skipped. This may be
useful if resource validation is failing for some reason but you still want
to continue the deployment.

false

fabric8.fai
lOnValidat
ionError

If value is set to true then any validation error will block the plugin
execution. A warning will be printed otherwise.

false

18

https://raw.githubusercontent.com/kubernetes/kubernetes/master/api/openapi-spec/swagger.json
https://raw.githubusercontent.com/openshift/origin/master/api/swagger-spec/openshift-openapi-spec.json

Configurat
ion

Description Default

fabric8.bu
ild.switch
ToDeploy
ment

If value is set to true then fabric8-maven-plugin would switch to
Deployments rather than DeploymentConfig when not using
ImageStreams on Openshift.

false

fabric8.op
enshift.tri
mImageIn
Container
Spec

If value is set to true then it would set the container image reference to "",
this is done to handle weird behavior of Openshift 3.7 in which
subsequent rollouts lead to ImagePullErr

false

5.1.4. Route Generation

When the fabric8:resource goal is run, an OpenShift Route descriptor (route.yml) will also be
generated along the service if an OpenShift cluster is targeted. If you do not want to generate a
Route descriptor, you can set the fabric8.openshift.generateRoute property to false.

Table 9. Route Generation Configuration

Configuration Description Default

fabric8.openshift.generateRo
ute

If value is set to false then no
Route descriptor will be
generated. By default it is set to
true, which will create a
route.yml descriptor and also
add Route resource to
openshift.yml.

true

If you do not want to generate a Route descriptor, you can also specify so in the plugin
configuration in your POM as seen below.

Example for not generating route resource by configuring it in pom.xml

<plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>
 <version>4.1.0</version>
 <configuration>
 <generateRoute>false</generateRoute>
 </configuration>
</plugin>

If you are using resource fragments, then also you can configure it in your Service resource
fragment (e.g. service.yml). You need to add an expose label to the metadata section of your service
and set it to false.

19

https://docs.openshift.org/latest/architecture/networking/routes.html

Example for not generating route resource by configuring it in resource fragments

metadata:
 annotations:
 api.service.kubernetes.io/path: /hello
 labels:
 expose: "false"
spec:
 type: LoadBalancer

In case both the label and the property have been set with conflicting values, precedence will be
given to the property value, so if you set the label to true but set the property to false then no Route
descriptor will be generated because precedence will be given to the property value.

5.1.5. Other flags

Table 10. Other options available with resource goal

Configuration Description Default

fabric8.openshift.enableAuto
maticTrigger

If the value is set to false then
automatic deployments would
be disabled.

true

fabric8.skipHealthCheck If the value is set to true then
no readiness/liveness checks
would be added to any
containers.

false

fabric8.openshift.deployTime
outSeconds

The OpenShift deploy timeout
in seconds.

3600

fabric8.openshift.imageChang
eTrigger

Add ImageChange triggers to
DeploymentConfigs when on
openshift.

true

5.2. fabric8:build
This goal is for building Docker images. Images can be built in two different ways depending on the
mode configuration (controlled by the fabric8.mode property). By default the mode is set to auto. In
this case the plugin tries to detect which kind of build should be performed by contacting the API
server. If this fails or if no cluster access is configured e.g. with oc login then the mode is set to
kubernetes in which case a standard Docker build is performed. It can also be forced to openshift to
perform an OpenShift build.

5.2.1. Kubernetes Build

If the mode is set to kubernetes then a normal Docker build is performed. The connection
configuration to access the Docker daemon is described in Access Configuration.

In order to make the generated images available to the Kubernetes cluster the generated images

20

need to be pushed to a registry with the goal fabric8:push. This is not necessary for single node
clusters, though as there is no need to distribute images.

5.2.2. OpenShift Build

For the openshift mode, OpenShift specific builds will be performed. These are so called Binary
Source builds ("binary builds" in short), where the data specified with the build configuration is
sent directly to OpenShift as a binary archive.

There are two kind of binary builds supported by this plugin, which can be selected with the
buildStrategy configuration option (fabric8.build.strategy property)

Table 11. Build Strategies

buildStrateg
y

Description

s2i The Source-to-Image (S2I) build strategy uses so called builder images for creating
new application images from binary build data. The builder image to use is taken
from the base image configuration specified with from in the image build
configuration. See below for a list of builder images which can be used with this
plugin.

docker A Docker Build is similar to a normal Docker build except that it is done by the
OpenShift cluster and not by a Docker daemon. In addition this build pushes the
generated image to the OpenShift internal registry so that it is accessbile in the
whole cluster.

Both build strategies update an Image Stream after the image creation.

The Build Config and Image streams can be managed by this plugin. If they do not exist, they will be
automatically created by fabric8:build. If they do already exist, they are reused, except when the
buildRecreate configuration option (property fabric8.build.recreate) is set to a value as described
in Configuration. Also if the provided build strategy is different than the one defined in the existing
build configuration, the Build Config is edited to reflect the new type (which in turn removes all
build associated with the previous build).

This image stream created can then be directly referenced from Deployment Configuration objects
created by fabric8:resource. By default, image streams are created with a local lookup policy, so
that they can be used also by other resources such as Deployments or StatefulSets. This behavior
can be turned off by setting the fabric8.s2i.imageStreamLookupPolicyLocal property to false when
building the project.

In order to be able to to create these OpenShift resource objects access to an OpenShift installation
is required. The access parameters are described in Access Configuration.

Regardless of which build mode is used, the images are configured in the same way.

The configuration consists of two parts: * a global section which defines the overall behaviour of
this plugin * and an <images> section which defines how the images should be build

Many of the options below are relevant for the Kubernetes Workflow or the OpenShift Workflow

21

https://docs.openshift.com/enterprise/latest/architecture/core_concepts/builds_and_image_streams.html
https://docs.openshift.com/enterprise/latest/architecture/core_concepts/builds_and_image_streams.html
https://docs.openshift.com/enterprise/latest/architecture/core_concepts/builds_and_image_streams.html
https://docs.openshift.com/enterprise/latest/architecture/core_concepts/builds_and_image_streams.html#source-build
https://docs.openshift.com/enterprise/latest/architecture/core_concepts/builds_and_image_streams.html#docker-build
https://docs.openshift.com/enterprise/latest/architecture/core_concepts/builds_and_image_streams.html#image-streams
https://docs.openshift.com/enterprise/latest/dev_guide/builds.html#defining-a-buildconfig
https://docs.openshift.com/enterprise/latest/architecture/core_concepts/builds_and_image_streams.html#image-streams
https://docs.openshift.com/enterprise/latest/architecture/core_concepts/deployments.html#deployments-and-deployment-configurations

with Docker builds as they influence how the Docker image is build.

For an S2I binary build, on the other hand, the most relevant section is the Assembly one because
the build depends on which buider/base image is used and how it interprets the content of the
uploaded docker.tar.

5.2.3. Configuration

The following sections describe the usual configuration, which is similar to the build configuration
used in the docker-maven-plugin.

In addition a more automatic way for creating predefined build configuration can be performed
with so called Generators. Generators are very flexible and can be easily created. These are
described in an extra section.

Global configuration parameters specify overall behavior common for all images to build. Some of
the configuration options are shared with other goals.

Table 12. Global configuration

Element Description Property

apiVersion Use this variable if you are using an older version of docker not
compatible with the current default use to communicate with the
server.

docker.apiVe
rsion

authConfig Authentication information when pulling from or pushing to Docker
registry. There is a dedicated section Authentication for how doing
security.

autoPull Decide how to pull missing base images or images to start: * on :
Automatic download any missing images (default) * off : Automatic
pulling is switched off * always : Pull images always even when they
are already exist locally * once : For multi-module builds images are
only checked once and pulled for the whole build.

docker.autoP
ull

buildRecrea
te

If the effective mode is openshift then this option decides how the
OpenShift resource objects associated with the build should be treated
when they already exist: * buildConfig or bc : Only the BuildConfig is
recreated * imageStream or is : Only the ImageStream is recreated *
all : Both, BuildConfig and ImageStream are recreated * none : Neither
BuildConfig nor ImageStream is recreated The default is none. If you
provide the property without value then all is assumed, so everything
gets recreated.

fabric8.buil
d.recreate

buildStrateg
y

If the effective mode is openshift then this option sets the build
strategy. This can be: * s2i for a Source-to-Image build with a binary
source * docker for a Docker build with a binary source By default S2I
is used.

fabric8.buil
d.strategy

22

https://dmp.fabric8.io
https://docs.openshift.com/enterprise/latest/architecture/core_concepts/builds_and_image_streams.html#source-build
https://docs.openshift.com/enterprise/latest/architecture/core_concepts/builds_and_image_streams.html#docker-build

Element Description Property

forcePull Applicable only for OpenShift, S2I build strategy. While creating a
BuildConfig, By default, if the builder image specified in the build
configuration is available locally on the node, that image will be used.
Using forcePull will override the local image and refresh it from the
registry the image stream points to.

fabric8.buil
d.forcePull

certPath Path to SSL certificate when SSL is used for communicating with the
Docker daemon. These certificates are normally stored in ~/.docker/.
With this configuration the path can be set explicitly. If not set, the
fallback is first taken from the environment variable DOCKER_CERT_PATH
and then as last resort ~/.docker/. The keys in this are expected with it
standard names ca.pem, cert.pem and key.pem. Please refer to the
Docker documentation for more information about SSL security with
Docker.

docker.certP
ath

dockerHost The URL of the Docker Daemon. If this configuration option is not
given, then the optional <machine> configuration section is consulted.
The scheme of the URL can be either given directly as http or https
depending on whether plain HTTP communication is enabled or SSL
should be used. Alternatively the scheme could be tcp in which case
the protocol is determined via the IANA assigned port: 2375 for http
and 2376 for https. Finally, Unix sockets are supported by using the
scheme unix together with the filesystem path to the unix socket. The
discovery sequence used by the docker-maven-plugin to determine
the URL is: . value of dockerHost (docker.host) . the Docker host
associated with the docker-machine named in <machine>, i.e. the
DOCKER_HOST from docker-machine env. See below for more information
about Docker machine support. . the value of the environment
variable DOCKER_HOST. . unix:///var/run/docker.sock if it is a readable
socket.

docker.host

image In order to temporarily restrict the operation of plugin goals this
configuration option can be used. Typically this will be set via the
system property docker.image when Maven is called. The value can be
a single image name (either its alias or full name) or it can be a
comma separated list with multiple image names. Any name which
doesn’t refer an image in the configuration will be ignored.

docker.image

machine Docker machine configuration. See Docker Machine for possible
values

mode The build mode which can be * kubernetes : A Docker image will be
created by calling a Docker daemon. See Kubernetes Build for details.
* openshift : An OpenShift Build will be triggered, which can be either
a Docker binary build or a S2I binary build, depending on the
configuration buildStrategy. See OpenShift Build for details. * auto :
The plugin tries to detect the mode by contacting the configured
cluster. auto is the default. (Because of technical reasons, "kubernetes"
is currently the default, but will change to "auto" eventually)

fabric8.mode

23

https://docs.docker.com/articles/https

Element Description Property

maxConnec
tions

Number of parallel connections are allowed to be opened to the
Docker Host. For parsing log output, a connection needs to be kept
open (as well for the wait features), so don’t put that number to low.
Default is 100 which should be suitable for most of the cases.

docker.maxCo
nnections

access Group of configuration parameters to connect to
Kubernetes/OpenShift cluster

outputDirec
tory

Default output directory to be used by this plugin. The default value is
target/docker and is only used for the goal fabric8:build.

docker.targe
t.dir

portPropert
yFile

Global property file into which the mapped properties should be
written to. The format of this file and its purpose are also described in
Port Mapping.

profile Profile to which contains enricher and generators configuration. See
Profiles for details.

fabric8.prof
ile

pullSecret The name to use for naming pullSecret to be created to pull the base
image in case pulling from a private registry which requires
authentication for Openshift. The default value for pull registry will
be picked from "docker.pull.registry/docker.registry".

fabric8.buil
d.pullSecret

registry Specify globally a registry to use for pulling and pushing images. See
Registry handling for details.

docker.regis
try

resourceDir Directory where fabric8 resources are stored. This is also the
directory where a custom profile is looked up. Default is
src/main/fabric8.

fabric8.reso
urceDir

environmen
t

Environment name where resources are placed. For example, if you
set this property to dev and resourceDir is the default one, Fabric8
will look at src/main/fabric8/dev. If not set then root resourceDir
directory is used.

fabric8.envi
ronment

skip With this parameter the execution of this plugin can be skipped
completely.

docker.skip

skipBuild If set not images will be build (which implies also skip.tag) with
fabric8:build

docker.skip.
build

skipBuildPo
m

If set the build step will be skipped for modules of type pom. If not set,
then by default projects of type pom will be skipped if there are no
image configurations contained.

fabric8.skip
.build.pom

skipTag If set to true this plugin won’t add any tags to images that have been
built with fabric8:build

docker.skip.
tag

skipMachin
e

Skip using docker machine in any case docker.skip.
machine

sourceDirec
tory

Default directory that contains the assembly descriptor(s) used by the
plugin. The default value is src/main/docker. This option is only
relevant for the fabric8:build goal.

docker.sourc
e.dir

24

Element Description Property

verbose Boolean attribute for switching on verbose output like the build steps
when doing a Docker build. Default is false

docker.verbo
se

5.2.4. Access Configuration

You can configure parameters to define how Fabric8 is going to connect to Kubernetes/OpenShift
cluster instead of relaying on default parameters.

<configuration>
 <access>
 <username></username>
 <password></password>
 <masterUrl></masterUrl>
 <apiVersion></apiVersion>
 </access>
</configuration>

Element Description Property
(System
property or
Maven
property)

username Username on which to operate fabric8.user
name

password Password on which to operate fabric8.pass
word

namespace Namespace on which to operate fabric8.name
space

masterUrl Master URL on which to operate fabric8.mast
erUrl

apiVersion Api version on which to operate fabric8.apiV
ersion

caCertFile CaCert File on which to operate fabric8.caCe
rtFile

caCertData CaCert Data on which to operate fabric8.caCe
rtData

clientCertFi
le

Client Cert File on which to operate fabric8.clie
ntCertFile

clientCertD
ata

Client Cert Data on which to operate fabric8.clie
ntCertData

clientKeyFil
e

Client Key File on which to operate fabric8.clie
ntKeyFile

clientKeyDa
ta

Client Key Data on which to operate fabric8.clie
ntKeyData

25

Element Description Property
(System
property or
Maven
property)

clientKeyAl
go

Client Key Algorithm on which to operate fabric8.clie
ntKeyAlgo

clientKeyPa
ssphrase

Client Key Passphrase on which to operate fabric8.clie
ntKeyPassphr
ase

trustStoreFi
le

Trust Store File on which to operate fabric8.trus
tStoreFile

trustStoreP
assphrase

Trust Store Passphrase on which to operate fabric8.trus
tStorePassph
rase

keyStoreFil
e

Key Store File on which to operate fabric8.keyS
toreFile

keyStorePas
sphrase

Key Store Passphrase on which to operate fabric8.keyS
torePassphra
se

5.2.5. Image Configuration

The configuration how images should be created a defined in a dedicated <images> sections. These
are specified for each image within the <images> element of the configuration with one 
 
 </images>
</configuration>

① One or more 
 </images>
 </configuration>
 ...
</plugin>

Build Plugins

This plugin supports so call dmp-plugins which are used during the build phase. dmp-plugins are
enabled by just declaring a dependency in the plugin declaration:

<plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>docker-maven-plugin</artifactId>

 <dependencies>
 <dependency>
 <groupId>io.fabric8</groupId>
 <artifactId>run-java-sh</artifactId>
 <version>1.2.2</version>
 </dependency>
 </dependencies>
</plugin>

These plugins contain a descriptor META-INF/maven/io.fabric8/dmp-plugin with class names, line-by-
line:

io.fabric8.runsh.RunShLoader

During a build with docker:build, those classes are loaded and certain fixed method are called.

The following methods are supported:

Method Description

addExtraFiles A static method called by dmp with a single File argument. This will point to a
directory docker-extra which can be referenced easily by a Dockerfile or an
assembly. A dmp plugin typically will create an own subdirectory to avoid a clash
with other dmp-plugins.

30

If a configured plugin does not provide method of this name and signature, then it will be simply
ignored. Also, no interface needs to be implemented to keep the coupling low.

The following official dmp-plugins are known and supported:

Name G,A Description

run-java.sh fabric8.io,
run-java

General purpose startup script fo running Java applications. The dmp
plugin creates a target/docker-extra/run-java/run-java.sh which can
be included in a Dockerfile (see the example above). See the run-
java.sh Documentation for more details.

Check out samples/run-java for a fully working example.

All build relevant configuration is contained in the <build> section of an image configuration. The
following configuration options are supported:

Table 14. Build configuration (
 
 </images>
</configuration>

There is some special behaviour when using an externally provided registry like described above:

• When pulling, the image pulled will be also tagged with a repository name without registry. The
reasoning behind this is that this image then can be referenced also by the configuration when
the registry is not specified anymore explicitly.

• When pushing a local image, temporarily a tag including the registry is added and removed
after the push. This is required because Docker can only push registry-named images.

93

Chapter 12. Authentication
When pulling (via the autoPull mode of fabric8:start) or pushing image, it might be necessary to
authenticate against a Docker registry.

There are five different locations searched for credentials. In order, these are:

• Providing system properties docker.username and docker.password from the outside.

• Using a <authConfig> section in the plugin configuration with <username> and <password>
elements.

• Using OpenShift configuration in ~/.config/kube

• Using a <server> configuration in ~/.m2/settings.xml

• Login into a registry with docker login (credentials in a credential helper or in
~/.docker/config.json)

Using the username and password directly in the pom.xml is not recommended since this is widely
visible. This is easiest and transparent way, though. Using an <authConfig> is straight forward:

<plugin>
 <configuration>
 
 ...
 <authConfig>
 <username>jolokia</username>
 <password>s!cr!t</password>
 </authConfig>
 </configuration>
</plugin>

The system property provided credentials are a good compromise when using CI servers like
Jenkins. You simply provide the credentials from the outside:

Example

mvn -Ddocker.username=jolokia -Ddocker.password=s!cr!t fabric8:push

The most mavenish way is to add a server to the Maven settings file ~/.m2/settings.xml:

94

Example

<servers>
 <server>
 <id>docker.io</id>
 <username>jolokia</username>
 <password>s!cr!t</password>
 </server>

</servers>

The server id must specify the registry to push to/pull from, which by default is central index
docker.io (or index.docker.io / registry.hub.docker.com as fallbacks). Here you should add your
docker.io account for your repositories. If you have multiple accounts for the same registry, the
second user can be specified as part of the ID. In the example above, if you have a second account
'fabric8io' then use an <id>docker.io/fabric8io</id> for this second entry. I.e. add the username
with a slash to the id name. The default without username is only taken if no server entry with a
username appended id is chosen.

The most secure way is to rely on docker’s credential store or credential helper and read
confidential information from an external credentials store, such as the native keychain of the
operating system. Follow the instruction on the docker login documentation.

As a final fallback, this plugin consults $DOCKER_CONFIG/config.json if DOCKER_CONFIG is set, or
~/.docker/config.json if not, and reads credentials stored directly within this file. This unsafe
behavior happened when connecting to a registry with the command docker login from the
command line with older versions of docker (pre 1.13.0) or when docker is not configured to use a
credential store.

12.1. Pull vs. Push Authentication
The credentials lookup described above is valid for both push and pull operations. In order to
narrow things down, credentials can be provided for pull or push operations alone:

In an <authConfig> section a sub-section <pull> and/or <push> can be added. In the example below
the credentials provider are only used for image push operations:

95

https://docs.docker.com/engine/reference/commandline/login/#credentials-store
https://docs.docker.com/engine/reference/commandline/login/#credentials-store

Example

<plugin>
 <configuration>
 
 ...
 <authConfig>
 <push>
 <username>jolokia</username>
 <password>s!cr!t</password>
 </push>
 </authConfig>
 </configuration>
</plugin>

When the credentials are given on the command line as system properties, then the properties
docker.pull.username / docker.pull.password and docker.push.username / docker.push.password are
used for pull and push operations, respectively (when given). Either way, the standard lookup
algorithm as described in the previous section is used as fallback.

12.2. OpenShift Authentication
When working with the default registry in OpenShift, the credentials to authenticate are the
OpenShift username and access token. So, a typical interaction with the OpenShift registry from the
outside is:

oc login
...
mvn -Ddocker.registry=docker-registry.domain.com:80/default/myimage \
 -Ddocker.username=$(oc whoami) \
 -Ddocker.password=$(oc whoami -t)

(note, that the image’s username part ("default" here") must correspond to an OpenShift project
with the same name to which you currently connected account has access).

This can be simplified by using the system property docker.useOpenShiftAuth in which case the
plugin does the lookup. The equivalent to the example above is

oc login
...
mvn -Ddocker.registry=docker-registry.domain.com:80/default/myimage \
 -Ddocker.useOpenShiftAuth

Alternatively the configuration option <useOpenShiftAuth> can be added to the <authConfig> section.

For dedicated pull and push configuration the system properties docker.pull.useOpenShiftAuth and
docker.push.useOpenShiftAuth are available as well as the configuration option <useOpenShiftAuth>

96

in an <pull> or <push> section within the <authConfig> configuration.

If useOpenShiftAuth is enabled then the OpenShift Konfiguration will be looked up in $KUBECONFIG or,
if this environment variable is not set, in ~/.kube/config.

12.3. Password encryption
Regardless which mode you choose you can encrypt password as described in the Maven
documentation. Assuming that you have setup a master password in ~/.m2/security-settings.xml
you can create easily encrypt passwords:

Example

$ mvn --encrypt-password
Password:
{QJ6wvuEfacMHklqsmrtrn1/ClOLqLm8hB7yUL23KOKo=}

This password then can be used in authConfig, docker.password and/or the <server> setting
configuration. However, putting an encrypted password into authConfig in the pom.xml doesn’t make
much sense, since this password is encrypted with an individual master password.

12.4. Extended Authentication
Some docker registries require additional steps to authenticate. Amazon ECR requires using an IAM
access key to obtain temporary docker login credentials. The docker:push and docker:pull goals
automatically execute this exchange for any registry of the form <awsAccountId> .dkr.ecr.
<awsRegion> .amazonaws.com, unless the skipExtendedAuth configuration
(docker.skip.extendedAuth property) is set true.

Note that for an ECR repository with URI 123456789012.dkr.ecr.eu-west-

1.amazonaws.com/example/image the d-m-p’s docker.registry should be set to
123456789012.dkr.ecr.eu-west-1.amazonaws.com and example/image is the <name> of the image.

You can use any IAM access key with the necessary permissions in any of the locations mentioned
above except ~/.docker/config.json. Use the IAM Access key ID as the username and the Secret
access key as the password. In case you’re using temporary security credentials provided by the
AWS Security Token Service (AWS STS), you have to provide the security token as well. To do so,
either specify the docker.authToken system property or provide an <auth> element alongside
username & password in the authConfig.

In case you are running on an EC2 instance that has an appropriate IAM role assigned (e.g. a role
that grants the AWS built-in policy AmazonEC2ContainerRegistryPowerUser) authentication
information doesn’t need to be provided at all. Instead the instance meta-data service is queried for
temporary access credentials supplied by the assigned role. Unresolved directive in index.adoc -
include::inc/_volumes.adoc[]

97

http://maven.apache.org/guides/mini/guide-encryption.html
http://maven.apache.org/guides/mini/guide-encryption.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/ECR_GetStarted.html

Chapter 13. Migration from version 2
This version 3 of f8-m-p is using a completely new configuration syntax compared to version 2.

If you have a maven project with a 2.x fabric8-maven-plugin then we recommend you run the mvn
fabric8:migrate goal directly on your project to do the migration:

in a fabric8-maven-plugin 2.x project
mvn fabric8:migrate
now the project is using 3.x or later

Once the project is migrated to 3.x or later of the fabric8-maven-plugin you can then run this
fabric8:setup goal at any time to update to the latest plugin and goals.

98

http://fabric8.io/guide/mavenFabric8Migrate.html
http://fabric8.io/guide/mavenFabric8Migrate.html

Chapter 14. FAQ

14.1. General questions

14.1.1. How do I define an environment variable?

The easiest way is to add a src/main/fabric8/deployment.yml file to your project containing
something like:

spec:
 template:
 spec:
 containers:
 -env:
 - name: FOO
 value: bar

The above will generate an environment variable $FOO of value bar

For a full list of the environments used in java base images, see this list

14.1.2. How do I define a system property?

The simplest way is to add system properties to the JAVA_OPTIONS environment variable.

For a full list of the environments used in java base images, see this list

e.g. add a src/main/fabric8/deployment.yml file to your project containing something like:

spec:
 template:
 spec:
 containers:
 - env:
 - name: JAVA_OPTIONS
 value: "-Dfoo=bar -Dxyz=abc"

The above will define the system properties foo=bar and xyz=abc

14.1.3. How do I mount a config file from a ConfigMap?

First you need to create your ConfigMap resource via a file src/main/fabric8/configmap.yml

99

https://hub.docker.com/r/fabric8/java-jboss-openjdk8-jdk
https://hub.docker.com/r/fabric8/java-jboss-openjdk8-jdk

data:
 application.properties: |
 # spring application properties file
 welcome = Hello from Kubernetes ConfigMap!!!
 dummy = some value

Then mount the entry in the ConfigMap into your Deployment via a file
src/main/fabric8/deployment.yml

metadata:
 annotations:
 configmap.fabric8.io/update-on-change: ${project.artifactId}
spec:
 replicas: 1
 template:
 spec:
 volumes:
 - name: config
 configMap:
 name: ${project.artifactId}
 items:
 - key: application.properties
 path: application.properties
 containers:
 - volumeMounts:
 - name: config
 mountPath: /deployments/config

Here is an example quickstart doing this

Note that the annotation configmap.fabric8.io/update-on-change is optional; its used if your
application is not capable of watching for changes in the
/deployments/config/application.properties file. In this case if you are also running the
configmapcontroller then this will cause a rolling upgrade of your application to use the new
ConfigMap contents as you change it.

14.1.4. How do I use a Persistent Volume?

First you need to create your PersistentVolumeClaim resource via a file src/main/fabric8/foo-pvc.yml
where foo is the name of the PersistentVolumeClaim. It might be your app requires multiple
vpersistent volumes so you will need multiple PersistentVolumeClaim resources.

100

https://github.com/fabric8-quickstarts/spring-boot-webmvc/tree/master/src/main/fabric8
https://github.com/fabric8io/configmapcontroller

spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 100Mi

Then to mount the PersistentVolumeClaim into your Deployment create a file
src/main/fabric8/deployment.yml

spec:
 template:
 spec:
 volumes:
 - name: foo
 persistentVolumeClaim:
 claimName: foo
 containers:
 - volumeMounts:
 - mountPath: /whatnot
 name: foo

Where the above defines the PersistentVolumeClaim called foo which is then mounted into the
container at /whatnot

Here is an example application

101

https://github.com/fabric8io/fabric8-devops/tree/master/gogs/src/main/fabric8

Chapter 15. Appendix

15.1. Kind/Filename Type Mapping

Kind Filename Type

BuildConfig bc, buildconfig

ClusterRole cr, crole, clusterrole

ConfigMap cm, configmap

ClusterRoleBinding crb, clusterrb, clusterrolebinding

CronJob cj, cronjob

CustomResourceDefinition crd, customerresourcedefinition

DaemonSet ds, daemonset

Deployment deployment

DeploymentConfig dc, deploymentconfig

ImageStream is, imagestream

ImageStreamTag istag, imagestreamtag

Job job

LimitRange lr, limitrange

Namespace ns, namespace

OAuthClient oauthclient

PolicyBinding pb, policybinding

PersistentVolume pv, persistentvolume

PersistentVolumeClaim pvc, persistemtvolumeclaim

Project project

ProjectRequest pr, projectrequest

ReplicaSet rs, replicaset

ReplicationController rc, replicationcontroller

ResourceQuota rq, resourcequota

Role role

RoleBinding rb, rolebinding

RoleBindingRestriction rbr, rolebindingrestriction

Route route

Secret secret

102

Kind Filename Type

Service svc, service

ServiceAccount sa, serviceaccount

StatefulSet statefulset

Template template

Pod pd, pod

15.2. Custom Kind/Filename Mapping
You can add your custom Kind/Filename mappings. To do it you have two approaches:

• Setting an environment variable or system property called fabric8.mapping pointing out to a
.properties files with pairs <kind>⇒filename1>, <filename2> By default if no environment
variable nor system property is set, scan for a file located at classpath /META-INF/fabric8/kind-
filename-type-mapping-default.properties.

• By embedding in MOJO configuration the mapping:

<plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>
 <configuration>
 <mappings>
 <mapping>
 <kind>Var</kind>
 <filenameTypes>foo, bar</filenameTypes>
 </mapping>
 </mappings>
 </configuration>
</plugin>

103

	fabric8io/fabric8-maven-plugin
	fabric8-maven-plugin
	Chapter 1. Introduction
	1.1. Building Images
	1.2. Kubernetes and OpenShift Resources
	1.3. Configuration
	1.4. Examples
	1.4.1. Zero-Config
	1.4.2. XML Configuration
	1.4.3. Resource Fragments

	Chapter 2. Compatibility with OpenShift and Kubernetes
	2.1. OpenShift Compatibility
	2.2. Kubernetes Compatibility

	Chapter 3. Installation
	Chapter 4. Goals Overview
	Chapter 5. Build Goals
	5.1. fabric8:resource
	5.1.1. Labels and Annotations
	5.1.2. Secrets
	5.1.3. Resource Validation
	5.1.4. Route Generation
	5.1.5. Other flags

	5.2. fabric8:build
	5.2.1. Kubernetes Build
	5.2.2. OpenShift Build
	5.2.3. Configuration
	5.2.4. Access Configuration
	5.2.5. Image Configuration
	5.2.6. Build Configuration
	5.2.7. Assembly
	5.2.8. Environment and Labels
	5.2.9. Startup Arguments
	5.2.10. Build Args

	5.3. fabric8:push
	5.4. fabric8:apply
	5.5. fabric8:resource-apply
	5.6. fabric8:helm

	Chapter 6. Development Goals
	6.1. fabric8:deploy
	6.2. fabric8:undeploy
	6.3. fabric8:log
	6.4. fabric8:debug
	6.4.1. Speeding up debugging
	6.4.2. Debugging with suspension

	6.5. fabric8:watch
	6.5.1. Spring Boot
	6.5.2. Docker Image

	Chapter 7. Generators
	7.1. Default Generators
	7.1.1. Java Applications
	7.1.2. Spring Boot
	7.1.3. Wildfly Swarm
	7.1.4. Thorntail v2
	7.1.5. Vert.x
	7.1.6. Karaf
	7.1.7. Web Applications

	7.2. Generator API

	Chapter 8. Enrichers
	8.1. Default Enrichers
	8.1.1. Standard Enrichers
	8.1.2. Fabric8 Enrichers

	8.2. Enricher API

	Chapter 9. Profiles
	9.1. Generator and Enricher definitions
	9.2. Lookup order
	9.3. Using Profiles
	9.4. Predefined Profiles
	9.5. Extending Profiles

	Chapter 10. Access configuration
	10.1. Docker Access
	10.2. OpenShift and Kubernetes Access

	Chapter 11. Registry handling
	Chapter 12. Authentication
	12.1. Pull vs. Push Authentication
	12.2. OpenShift Authentication
	12.3. Password encryption
	12.4. Extended Authentication

	Chapter 13. Migration from version 2
	Chapter 14. FAQ
	14.1. General questions
	14.1.1. How do I define an environment variable?
	14.1.2. How do I define a system property?
	14.1.3. How do I mount a config file from a ConfigMap?
	14.1.4. How do I use a Persistent Volume?

	Chapter 15. Appendix
	15.1. Kind/Filename Type Mapping
	15.2. Custom Kind/Filename Mapping

